Home » » Matematiksel Espriler

Matematiksel Espriler

MATEMATİKÇİ TÜRLERİ

Üç çeşit matematikçi vardır: saymasını bilenler ve saymasını bilmeyenler.

ANALİZ

Analizin de bir limiti vardır. YAŞLI

MATEMATİKÇİLER

Matematikçiler yaşlanınca ölmezler, sadece bir takım fonksiyonlarını kaybederler.

'e' SAYISI NİÇİN 'pi' SAYINDAN DAHA ÜSTÜNDÜR?

Telaffuzu daha kolaydır.
'e' sayısı klavyede kolayca bulunabilir, fakat 'pi' sayısı öyle değildir.
ln(pi1) acaip bir sayıdır, fakat ln(e1) 1'dir.
'e' sayısı analizde kullanılır, fakat 'pi' sayısı bebek geometrisinde bile kullanılır.
Çarkıfelek yarışmasında en çok kullanılan ünlü harf 'e''dir.
'e' sayısı Euler sayısı demektir, 'pi' sayısının böyle bir anlamı yoktur
'e' sayısını kullanabilmek için Yunan alfabesine bulaşmanız gerekmez.

'pi' SAYISI NİÇİN 'e' SAYINDAN DAHA ÜSTÜNDÜR?


'e' sayısını telaffuz etmek fazlasıyla kolaydır.
'e' sayısı 2,718281828459045... şeklinde devam ettiğinden ezberlenmesi çok kolaydır, halbuki 'pi' sayısını ezberlemek hüner ister.
'e' sayısına kolayca ulaşabilirsiniz, klavyede bile vardır. Fakat 'pi' sayısı asil bir sayı olduğundan ona ulaşabilmek için Word programının 'Sembol ekle' kısmına girmelisiniz.
'e' sayısının sonsuz seriler olarak ifade etmek kolaydır, 'pi' sayısını ifade edebilmekse oldukça zordur.
'e' sayısını Analiz derslerine başladığınızda görür ve anlarsınız, fakat 'pi' sayısını görmenizin üzerinden yıllar geçer ve hala anlamamışsınızdır.
İnsanlar Euler sayısı (e) ile Euler sabiti (gama) sayılarını kolayca karıştırabilirler, fakat tek bir 'pi' sayısı olduğundan 'pi' sayısı için böyle bir durum yoktur.
'e' sayısı bir kişinin ismini temsil eder, fakat 'pi' sayısı kendini temsil eder.
'pi' demek 'Euler sayısı' demekten çok daha kolaydır. 'pi' diyebilmek için 'Euler' isminin 'Öyler' olarak okunduğunu bilmenize gerek yoktur.

KOMPLEKS HAYAT

Hayat komplekstir. Gerçek ve sanal bileşenleri vardır.

BÜYÜK BEYİN


Küçük beyinler kişileri konuşur, orta beyinler olayları, büyük beyinlerse fikirleri tartışır. Daha büyük beyinlerse matematikle uğraşır.

YARDIM HATTI

Matematik problemleriniz mi var? 0-800-[(10x)(13i)^2]-[sin(xy)/2.362x] numaralı telefonu arayın yeter.

TÜM SAYILAR SIKICIDIR

Teorem: Tüm sayılar sıkıcıdır. İspat: Tersini düşünelim. x sayısı sıkıcı olmayan bir sayı olsun. Amaan, boşver...

TÜM POZİTİF TAMSAYILAR İLGİNÇTİR


Teorem: Tüm pozitif tamsayılar ilginçtir. İspat: Tersini varsayalım.O halde ilginç olmayan tamsayıların içinde biri bulunabilir ki en küçükleridir. Hey, bu çok ilginç! Çelişki...

TÜM ATLAR AYNI RENKTEDİR

Teorem: Tüm atlar aynı renktedir. İspat: Tümevarım kullanalım. n = 1 için ifadenin doğruluğu açıktır (bir at aynı renktedir). n = k için iddianın doğru olduğunu kabul edelim, yani k tane at aynı renktedir. n = k + 1 için ispatlamalıyız. k + 1 tane at gözönüne alalım ve bunlara 1'den k+1'e kadar numaralar verelim. '1' numaralı atı dışarıya alırsak az önceki kabulümüzden dolayı kalan k tane at aynı renkte olacaktır. Aynı işlemi '2', '3', ... , 'k+1' numaralı atlar için tekrarladığımızda da aynı durum olacaktır. Dolayısıyla tüm atlar aynı renktedir.

HERŞEY AYNI RENKTEDİR

Teorem: Herşey aynı renktedir. İspat: Bir önceki teorem kullanılarak denebilir ki: "Her x için, eğer x bir atsa, x aynı
renktedir". Burada kullanılan "x bir atsa" ifadesi herşey için kullanılabileceğinden herşey
aynı renktedir.
PAYLAŞ :

+ yorum + 1 yorum

Adsız
4 Mayıs 2014 18:39

Gerçekten güzelmiş
:)

Yorum Gönder

 
Copyright © 2011. Matematik Canavarı - All Rights Reserved